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Introduction and Motivation:

From brain computational models
we learn better Al algorithms

A Novel Spiking Neural Network method
/":\>‘ inspired from neuroscience theory and
analvtical investigation
° Liquid state Machine is still unexplored
Neuro Al potential area of interest
W Spiking Neural
Networks

From improved Al algorithms we
learn better models of how brain
works

Reinforced Liquid state

Liquid state Machine .
machine

Intersection of computational neuroscience and
machine learning, to build the mathematical models of
brain to better understand it!




Inspiration

1. Neuroscience:
SNNs are what the brain does. If we want to fully understand the brain we

need to understand SNNs.
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2. Energy Consumption:
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Spiking Neural Networks

What is SNNs?

LIF neuron Model

Synapse Model



Leaky-Integrate and Fire Model

A single spiking neuron is modeled as LIF (Leaky-Integrate and Fire) Model:
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Neuron Model: LIF

Constant Current (Iinj)
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synapse model

MSSM (Modified Stochastic Synaptic Model)

Simulate liquid synapses when given spike trains as input. Working as shown below:
mitochondria
synapse = MSSM(pars)
neurotransmitters
vesicle A wron C, vV, E_final, W, Iinj, P = synapse(spike_train, is_inh)
erminal
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Spiking Neural Network
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Literature review:

Neural Networks with Dynamic Computation with spikes in a
Synapses winner-take-all network

Tsodyks,Pawelzik, Markram, 1998 )
Oster, M; Douglas, R Liu, 2009

O
O

Bogdan etal, 2017 Frémaux N and Gerstner W, 2016

Neuromodulated
Enhancements on the Modified Spike-Timing-Dependent
Stochastic Synaptic Model: The Plasticity,and Theory of
Functional Heterogeneity Three-Factor Learning Rules




Problem statement

e Applving Reinforcementlearning(RL) in Recurrent Spiking Neural Network (SNN)
o Predictive coding is prevalent in neural microcircuits, minimizing the prediction error
through hierarchical feedback loops.
o R-STDP reward modulated Spike time-dependant plasticity for adaptive, reward-based
synaptic updates.
o  Our goal is to make model that performs well with complex tasks such as activity detection
real-time videos, real-time fmri dataset etc.

Ref, RLSM

Fig. 1: The architecture of the Reinforced Liquid State Machine.


https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1569374/full

Liquid State Machine (LSM)

Inspiration
Components

What’s LSM?



Inspiration

1. Almost 80% synapses are used in multiple recurrent loops,

which is a challenge for traditional ANN.

2. Neocortex works well with rapidly changing spatiotemporal

inputs and it is high dimensional dynamical system.

3. Issue with Turing Machine

Offline computation:
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Liquid state machine: Overview

Input: encoded spike trains | Liquid: It is recurrent SNN, with few special properties. | Readout: trained output layer

1 Readout neurons play a crucial role of identifying

salient features of high dimensional dynamic systems,

Liquid memoryless readout, with transient internal state.

trained for a specific task

LM liquid mapping: input u(-) — high-dimensional state 2 (t)
.\'"(f) = (L"u)(t)
w1 = f(M(0)

fM = readout (trained) — output y(t)

u(s) for
all s<t

= liquid state of the
Liquid State Machine



Liquid/reservoir:

State of each
neurons at time t

.T‘M(t)

Recurrent
Spiking Neural
Network

Empirically/theoretically random reservoir/liquid follows SP and
Fading memory.

Recurrent SNN
Encodes input into rich high dimension
aM(t) = (Lpu)(t)
aM(t) = {'(t), 23" (t), ...,z (8) }
Untrained

o  Already provides High dimensional temporal space
o  Training readout layer is suffice

Follows Separation Property (SP)
uy #uz = (Laur)(t) # (Laruz)(t)

Follows Fading memory
|(Laru)(t) — (Lav)(2)|| = 0 if  w(s) = v(s) fors <t



Liquid Architecture:

tting seed 3D Neuron Network
95 np.random.seed(1821) @ Excitatory
6 rng = np.random.default rng(seed=1821) @ Inhibitory
@® Input
# parameters
pars = default pars()

rsnn = SRN(pars)

= Poisson generator(pars, rate=1500, n=27, myseed=2020) #1,

@7 m, e, i, inpt = rsnn.architecture()

8 liquid state = rsnn.simulate(pre spike train_ ex)
0 # ot

1 my neuronNet plot(m, e, i, inpt)

Number of neurons: 135

Number of excitatory neurons: 108

Number of Input neurons: 16

Index of Input neurons: [ 44 43 65 33 35 108 20 102 18 59 51 9 109 126 80 45]
Neurons in position: 41th neuron is in [6 2 1] position

Created 1454 MSSM synapses.
synapse[0]: (0, 15) (My results)




2M(t) = {2{'(t), 23" (1), ..., 2z ()} | Wiloxsss

Readout Layer:

The readout layer is where all task-specific
learning happens

135 Neurons
10 Readoul Neuron

A linear readout is enough to extract the desired pattern.

Normal Layer (AN or SN)
Linear mapping of high dimension liquid
state to output

Trained
o  Wmatrix is updated by supervised
learning

o  No backprop through time
Follows Approximation Property (AP)
o Ifthe liquid satisfies SP and M, then
a linear readout can approximate
any causal function of the input
(Maass et al., 2002).

y(t) = fau(z™(t)) = fu((Larw)(t))



14

ss Net(nn.Module):

def init (self):
super(Net, self). init ()
self.fcl = nn.Linear(135,10)

lef forward(self, x):
X = self.fcl(x)
x = F.relu(x)
return x

OO ULL S WN =

ss ReadoutLayer:
def init(self, pars):
self.pars = pars

self.net = Net() Readout Layer
self.P = 10

f simulate(self, liquid state):
# liquid state N neurons getting added to 10 readout ne
input = np.mean(liquid state, axis=1)
input = torch.from numpy(input).float().unsqueeze(0) # (
output = self.net(input) # (1, 10)

return output

28 pars = default pars()

29 readout = ReadoutLayer()

30 readout.init(pars)

31 output = readout.simulate(liquid state)
32 print("train:", output.shape)

33




Input: Spike Encoding + Dataset

Way to converting input signals to spike trains (NMNIST) Dataset:
SHccadaD e N-MNIST converts the static 28x28

e Neuromorphic-MNIST (NMNIST) is a spiking \_ MNIST digits into spike trains by _

version of the classic MNIST dataset Saccade 1 l Saccade 2 physically moving a camera (ATIS) in
. three small microsaccades while

e LEvent-based encoding : \/ viewing the images on a monitor
Generates a spike only when the pixel MNIST image
intensity changes / l ° Each pixel emits an ON/OFF spike on

. . . . intensity change due to motion

e [t mimics biological eye-movements ON = brightness 1, OFF = brightness |
(Neurons emit spikes only when input signals N-MNIST
change) Patterns

Raster graph {rom the N-MNIST datasel:
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Putting all together: LSM

3D Neuron Network
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Input
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Input: encoded spike trains | Liquid: It is recurrent SNN, with few special properties. | Readout: trained output layer




Next Thing to do: RLSM pipeline

Input

Winner-Takes-All-

211§ Trainable
1.+ § Synapses

Layer

Liquid Layer

Linear
Readout

Fig. 1: The architecture of the Reinforced Liquid State Machine.

Predictive coding: Through hierarchical feedback
loop, minimising predictive error.

Features:

e  We use multiple liquid layer, Deep
Liquid State Machine

e How do we connect liquid layer?
> Winner-Takes-All layer, with
STDP (spike-time dependant
plasticity) synapse model.
> Trainable synapses

e Reward-system: reward modulated
stdp, again mimicking neurobiology
of neuromodulators



Upgraded Synaptic Model: STDP

STDP is governed by the relative timing of these spikes, leading to either
long-term potentiation (LTP) or long-term depression (LTD) of the synapse

~— Synaptic Learning
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There is also concept Homeostasis,

which I will not cover here...
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WTA- Layer (R-STDP)

Reward Signal

Lateral
Inhibition [ @

Layer ——— -
~ — e p.argpartition(I exc, -K)[-k:
s — ~ — 1 =
\an _J Excitatory [ NSA— B ] :
ayer Layer Iinh = g inh * n

y it nn
\\ D T I RETEREES SRR “ I_inh
H e ( c_post, €

1. Eligibility trace acts as a short-term memory — it decays
over time but is refreshed whenever a local synaptic

detrace €trace change occurs.

d == — + A'wlocal
t Ttrace :
2. This trace stores when and how much a synapse was

active, waiting for a later reward signal.
Au”feedback = T * €trace
3. When a reward ( r) arrives, the actual weight change is
computed as linking past activity to current reward — the
essence of reward-modulated plasticity.



Section 5: WTA and R-STDP

. : . N da
. Presynaptic trace created by incoming presynaptic spikes: —— =

. When the postsynaptic neuron fires, the weight of the synapse is updated based on
— Ttar ) (Wmax - w)*

. Synaptic scaling: Wygea) =

. To enable faster learning by crediting actions that contributed to future rewards, a eligibility trace etrace is introduced. This trace

=~ = + AWiecal

acts as a bridge linking the local synaptic updates: —=

. Overall weight update: AWseedback = T * Etrace

pre spike train ex = Poisson generator(pars, rate=10, n=5, myseed=2020)
t pre = generate presynaptic trace(pars, pre spike train ex)

83 my example trace(pre spike train ex, pars, t pre)

dwW,W = Delta W(pars, t pre)
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New Features Summary:

1.

Local temporal learning:

STDP captures fine-grained spike-timing correlations between liquid
(pre-) and WTA (post-) neurons — enabling each WTA neuron to becom
selective to specific temporal input patterns.

Global performance feedback:
The reward signal adds a third factor that reinforces learning— linking
local plasticity to task outcome.

Compelition and specialization:
The WTA mechanism ensures only the K fastest (strongest) neurons fire;
R-STDP helps to specialize on distinct input features.

Neuromodulator Signal

Liquid 1

Reward
System

; Readout ,1
. Excitatory Neurons

@ !Inhibitory Neurons



RL S M . Reward signal r

3D Neuron Network 3D Neuron Network

® exitatory
® hibitory
@ put

Excitatory
inhibitory
input

oee

1
>4
r-STDP @ MSSM
. |
1
1
1
1

D WTA
Building on this model, we plan to extend the
framework to handle video-based activity deteclion
and real-time fMRI datasets, enabling the system to Rﬁiggft

process continuous, dynamic inputs in biologically
realistic ways.

output
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| Rate Coding DeltaModulation
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#

NMNIST

Generates a spike only when the pixel intensity changes o ¥
i.e., when there is new information.

NMNIST is created from event-based spike encoding

FIGURE 2 (A) A picture of the ATIS mounted on the pan tit unit used in the conversion system. (B) The ATIS placed viewing the LCD monit

Method:

1. Event based Camera Saccade 3
ATIS (Asynchronous Time-based Image Sensor) \
-The camera/sensor was mounted on a pan-tilt unit facing a !
monitor displaying static MNIST digits. Saccade 1.

Saccade 2

2.  Monitor \
-screen displaying one MNIST digit at given time MNIST image
3. Motion/ saccades l

- performs three tiny saccades while looking at a static MNIST digit

on a monitor
4. Duration N-MNIST

-each digit recorded for ~ 300 ms (three saccades of 100 ms each) Patterns

“Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades,” Orchard et al., 2015



